Característica de Euler

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Predefinição:Sem-fontes Em matemática, e mais especificamente na topologia algébrica , a característica de Euler (ou característica de Euler–Poincaré) é um invariante topológico, um número que descreve a forma ou a estrutura de um espaço topológico independentemente da forma como ela é dobrada. Este invariante foi descoberto por Leonhard Euler e demonstrada em geral por Henri Poincaré e costuma ser denotado por (a letra grega Chi).

A característica de Euler foi definida originalmente para poliedros, tendo sido utilizada para demonstrar vários teoremas sobre eles, incluindo a classificação dos sólidos platônicos. Leonhard Euler, matemático cujo nome é atribuído ao conceito, foi responsável por grande parte deste trabalho inicial. Na matemática moderna, a característica de Euler surge a partir da homologia e está relacionada a vários outros invariantes.

Definição

A característica de Euler de um complexo simplicial é dada por

onde é o número de células de dimensão .

Característica de Euler de superfícies

A característica de Euler de um cubo (topologicamente uma esfera) é 6-12+8=2.

A característica de Euler de uma superfície é dada por , onde e são respectivamente o número de vértices, arestas e faces de uma triangulação de . Em particular a característica de Euler:

  • da esfera é
  • do plano projectivo é
  • do disco é
  • do toro é
  • do anel é
  • da garrafa de Klein é
  • da fita de Möbius é

e em geral , onde é o género de , quando orientável e compacta.

Exemplos de poliedros convexos

A fórmula de Euler para poliedros convexos é V + F = A + 2, e a característica de Euler generaliza esta expressão para qualquer número de dimensões e para polítopos que não são, topologicamente, equivalentes à esfera (ou hiperesfera).

Name Image Vértices
V
Arestas
A
Faces
F
Característica de Euler:
VA + F
Tetraedro 4 6 4 2
Hexaedro ou cubo 8 12 6 2
Octaedro 6 12 8 2
Dodecaedro 20 30 12 2
Icosaedro 12 30 20 2

Característica de Euler de variedades de dimensão ímpar

Pela dualidade de Poincaré, a característica de Euler de uma variedade fechada e compacta de dimensão ímpar é nula.

Ver também

  • Lakatos (1976). Proofs and Refutations. Cambridge: Cambridge University Press. ISBN 0521290384