Decomposição LU

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Predefinição:Mais fontes Em álgebra linear, a decomposição LU (em que LU vem do inglês lower e upper) é uma forma de fatoração de uma matriz não singular como o produto de uma matriz triangular inferior (lower) e uma matriz triangular superior (upper). Às vezes se deve pré-multiplicar a matriz a ser decomposta por uma matriz de permutação. Esta decomposição se usa em análise numérica para resolver sistemas de equações (mais eficientemente) ou encontrar as matrizes inversas.

Definições

Sendo A uma matriz não singular (se o fosse, então a decomposição poderia não ser única)

onde L e U são, respectivamente, matrizes inferiores e superiores triangulares.

Para matrizes , isto é:

A decomposição PLU tem esta forma:

[1] ou também: (lembrando que as matrizes de permutação são inversíveis e a sua inversa é a sua transposta).

Onde L (Lower) e U (Upper) são, de novo, duas matrizes triangulares inferior e superior respectivamente e P é uma matriz de permutação.

Unicidade

As matrizes L e U são únicas, se a matriz não é singular. Em caso contrário podem não ser únicas.

Demonstração:

Dada a matriz A

e

Recordemos que são invertíveis por terem o determinante diferente de zero.

Então:

Então é uma matriz triangular inferior, com 1s na diagonal e, consequentemente, possui 1s na diagonal e é triangular superior (recordando que o produto matricial de triangulares superiores/inferiores é triangular superior/inferior). A única matriz que cumpre estas duas propriedades é a matriz identidade. Portanto:

e

Com o qual:

e

Algoritmos

A decomposição LU é basicamente uma forma modificada da eliminação gaussiana. Transformamos a matriz A em uma triangular superior U anulando os elementos debaixo da diagonal.

Onde são matrizes elementares, que representam os distintos passos da eliminação.

Logo, recordando que a inversa de uma matríz elementar é outra matriz elementar:

Consequentemente, L é uma matriz triangular inferior.

Aplicações

Resolução de sistemas de equações lineares

Dada a equação matricial

Queremos a solução para um determinando A e b. Os passos são os seguintes:

  1. Primeiro, resolvemos para y
  2. Segundo, resolvemos para x.

Note-se que já temos as matrizes L e U. A vantagem deste método é a eficiência computacional porque podemos escolher qualquer novo o vetor b que não teremos que voltar a fazer a eliminação de Gauss a cada vez.

Matriz inversa

As matrizes L e U podem ser usadas para calcular a matriz inversa. Algumas implementações que invertem matrizes usam este método.

No caso em que

x e b são tratados como vetores. Ao trocar o vetor x pela matriz X e o vetor b pela matriz B passamos a ter

Agora, supondo que B seja a matriz identidade, teremos então que X será a inversa de A.

Determinante de uma matriz

As matrizes e podem ser usadas para calcular o determinante da matriz muito eficientemente porque e os determinantes de matrizes triangulares são simplesmente o produto dos elementos de suas diagonais. Em particular, se L é uma matriz triangular em cuja diagonal todos os elementos são 1s, então:

A mesma aproximação ao problema pode ser usada para decomposições LUP nas que aparecem matrizes de permutação, pois o determinante de uma matriz de permutação P é (−1)S, onde é o número de permutações de filas na decomposição.