Espaço de Teichmüller

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Espaço de Teichmüller T(S) de uma superfície S topológica (ou diferencial) é um espaço que parametra estruturas complexas em S até a ação de homeomorfismos que são isotópicos para o homeomorfismo identitário. O conceito foi introduzido na década de 1930 por Oswald Teichmüller.[1]

Definições

Superfícies tipo finito

Estas são as superfícies para as quais o espaço de Teichmüller é mais frequentemente estudado, que inclui superfícies fechadas. Uma superfície é de tipo finito se for difeomórfica em uma superfície compacta menos um conjunto finito. Se for uma superfície fechada do gênero , então a superfície obtida pela remoção de pontos de é geralmente denotada e seu espaço Teichmüller por .[2]

Espaços de Teichmüller de dimensão infinita

As superfícies que não são de tipo finito também admitem estruturas hiperbólicas, que podem ser parametrizadas por espaços de dimensões infinitas (homeomórficos a ). Outro exemplo de espaço de dimensões infinitas relacionado à teoria de Teichmüller é o espaço de Teichmüller de uma laminação por superfícies.[3][4] Predefinição:Referências Predefinição:Esboço-matemática

  1. Introduction to Teichmüller theory, old and new por Athanase Papadopoulos (2014)
  2. THE UNIVERSAL PROPERTIES OF TEICHMULLER SPACES por Vladimir Markovic e Dragomir Sarić, publicado no Journal of Differential Geometry
  3. Predefinição:Citar periódico
  4. Predefinição:Citar periódico